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Abstract
A veritable zoo of different knots is seen in the ensemble of looped polymer
chains, whether created computationally or observed in vitro. At short loop
lengths, the spectrum of knots is dominated by the trivial knot (unknot).
The fractional abundance of this topological state in the ensemble of all
conformations of the loop of N segments follows a decaying exponential
form, ∼exp(−N/N0), where N0 marks the crossover from a mostly unknotted
(i.e., topologically simple) to a mostly knotted (i.e., topologically complex)
ensemble. In the present work, we use computational simulation to look closer
into the variation of N0 for a variety of polymer models. Among models
examined, N0 is smallest (about 240) for the model with all segments of the
same length, it is somewhat larger (305) for Gaussian-distributed segments, and
can be very large (up to many thousands) when the segment length distribution
has a fat power-law tail.

PACS numbers: 02.40.−k, 82.35.−x
Mathematics Subject Classification: 57M25, 82D60

(Some figures in this article are in colour only in the electronic version)

1. Introduction: formulation of the problem

Of interest to anglers seeking to fill their creels and children seeking to fasten their shoes, a wide
audience has found knots compelling from time immemorial. In the scientific community,
knots have been featured in initial formulations of the nature of atoms [1] (see a popular
historical account in [2]), the formulation of certain path integrals [3] and also in quantitative
biology, where knots have been observed in [4, 5] and tied into DNA [6, 7], where the space of
knots is biologically created and manipulated [8]. Knots also have been observed occasionally
in proteins [9–14].

0305-4470/06/299081+12$30.00 © 2006 IOP Publishing Ltd Printed in the UK 9081

http://dx.doi.org/10.1088/0305-4470/39/29/005
mailto:nmoore@winona.edu
mailto:grosberg@physics.umn.edu
http://stacks.iop.org/JPhysA/39/9081


9082 N T Moore and A Y Grosberg

Historically, the classification of knots and study of knot invariants were the first
subjects of knot theory [2], and this remains the centre of attention among knot theorists
of mathematical orientation [3]. Another fundamental aspect of knot theory is that of knot
entropy. Physically, this group of problems comes to the fore in the context of polymers and
biophysics. Mathematically, this issue belongs to both topology and probability theory and
seems to remain underappreciated in the mathematics and mathematical physics community.
Even the simplest question in this area is poorly understood: what is the probability that a
randomly closed loop in 3D will be topologically equivalent to a plane circle? In other words,
using professional parlance of the field, what is the probability that random loop is a trivial
knot (unknot), 01? There are, of course, many more questions along the same lines, e.g., what
are probabilities of other more complex knots? what is the entropic response of a topologically
constrained loop to various perturbations, etc.

Most of what we know about these ‘probabilistic topology’ questions is learned from
computer simulations. In particular, it has been observed by many authors over the last three
decades [15–19] that the trivial knot probability depends on the length of the loop, decaying
exponentially with the number of segments in the loop, N:

wtriv = A exp(−N/N0). (1)

For some lattice models this exponential law, in the N → ∞ asymptotics, was also
mathematically proven [20, 21]. It was also noted [17] that the same exponential law, with the
same decay parameter N0, also describes the large N asymptotical tail of the abundance of any
other particular knot—although for complex knots exponential decay starts only at sufficiently
large N (as soon as the given knot can be identified as an underknot [24]).

An alternative view of formula (1), useful in the context of thermodynamics, implies that
the removal of all knots from the loop is associated with thermodynamically additive (linear
in N) entropy loss of 1/N0 per segment; in other words, at the temperature T, untying all knots
would require mechanical work of at least kBT /N0 per segment.

Another manifestation of the importance of the N0 parameter was found in the recent
series of works [22–25]. These works belong to the direction [26–30] addressing the spatial
statistics of polymer loops restricted to remain in a certain topological knot state. It turns out
that even for loops with no excluded volume and thus are not self-avoiding, N0 marks the
crossover scale between mostly Gaussian (N < N0) and significantly non-Gaussian (N > N0)

statistics. Indeed, at N < N0, locking the loop in the state of an unknot excludes only a small
domain of the conformational space which produces only marginal (albeit non-trivial [25])
corrections to Gaussian statistics—for instance, mean-squared gyration radius of the loop is
nearly linear in N. By contrast, at N > N0, the topological constraints are of paramount
importance, making the loop statistics very much non-Gaussian and consistent with effective
self-avoidance [23, 24, 26, 30].

Thus, it seems likely that the parameter N0 might hold the key to the entire problem of
knot entropy. We therefore decided to look at this parameter more closely in this paper.

Present understanding of the values of N0 is quite modest. First, the constant’s value
was invariably found to be quite large, around 300 for all examined models of ‘thin’ loops
with no excluded volume, or no self-avoidance [15–17, 23, 24]. Second, it is known that
knots are dramatically suppressed for ‘thick’ self-avoiding polymers, which means that N0

rapidly increases with the radius of self-avoidance [17, 19]. The latter issue is also closely
connected to the probabilities of knots in lattice models, where the non-zero effective self-
avoidance parameter is automatically set by the lattice geometry. In the present paper, we will
only consider the arguably more fundamental case of loops with self-avoidance excluding a
negligible volume.
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The starting point of our analysis is the observation that N0 appears to be noticeably
different for two standard polymer models for which common sense suggests that they should
be equivalent. Both models can be called freely jointed in the sense that they consist of N
rigid segments with free rotation in the joints. However, in one model all segment vectors
are of the same length, while in the other model segment vectors are taken from a Gaussian
distribution. The motivation to consider the Gaussian-distributed step vectors comes from
the idea of decimation or renormalization: we can start from the loop with Ng segments of
equal length and then group them into N � 1 blobs of g � 1 bare segments, each blob
having nearly Gaussian-distributed end-to-end vector. With respect to the knot abundance,
the fixed length model was examined in [16] and the Gaussian model in [17]. It was noted
that N0 for the Gaussian-distributed steps was larger than for identical steps, assuming no
self-exclusion in both cases. No attention was paid to this observation, possibly because there
was no confidence that the observed difference is real, in the context of the numerical error
bars in the pertinent measurements.

Recently [23, 25], more detailed data became available which suggests that indeed N0 is
different for the two models, with fixed or Gaussian-distributed steplength. A similar result
was independently obtained by Vologodskii [31]. Later in this paper, we present even better
quality data supporting the same observation that N0 is different for these two models. This is a
rather disturbing observation. Indeed, the idea of universality in polymer physics [34] suggests
that there should not be any difference between these two models as far as any macroscopic
quantity is concerned. For instance, not only is the mean-squared gyration radius the same
for both models, but even the distribution of the gyration radii is the same, except far into the
tails. In general, the difference between polymer models of this type becomes significant only
in the strong stretching regime [35] or at high density [32]. Even if one takes into account the
idea that knots, when present in a low-density, swollen coil, are most likely localized along
the chain [36–40], it is unclear how this fact can manifest itself for the loop which has no
knots. (Here, it is worth noting in passing that knots are localized in swollen coils, but get
delocalized along the chain when the polymer is a collapsed globule [41]; of course, this also
does not seem to reflect on the swollen loops with no knots.)

Thinking generally about the loop models with fixed or Gaussian steplength, our reaction
to this discrepancy is to realize that the major difference between the two freely jointed loop
models is that the Gaussian model may have a few unusually long segments, suppressing the
ability of other shorter segments to wind around, and thus decreasing the possibility for knots
to occur, and accordingly, increasing N0. Thus, the ability to take long strides might account
for the comparative slowness of the ensemble of loops with Gaussian steplengths to diversify
their knot spectrum with increasing N. The main goal of the present work is to investigate this
conjecture.

The plan of the work is as follows. After a brief description of our computational
algorithms used to generate closed loops and to identify their topologies (section 2), we
present computational results (section 3) on knot abundance for a variety of models differing
in the width of their steplength distribution. In addition to the already mentioned loops with
fixed and Gaussian-distributed steplengths, in order to look at the even broader distributions
which allow for very long segments, we also generated loops with the generalized Cauchy–
Lorentz ‘random-flight’ distribution. Finally, we include loops of bimodally distributed fixed
steplength.

In brief, our results are as follows. First, we confirm the exponential decay law of the
unknot probability, formula (1), across all models examined. Second, we qualitatively find
that indeed a wider distribution of the segment lengths leads to knot suppression, i.e. a larger
N0. Third, and most unexpectedly, we find that N0 does not show any signs of any singular
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behaviour associated with the divergence of mean-squared segment length or any other moment
of the segment length distribution. Instead, N0 blows up and appears to grow without a bound
when the distribution of segment lengths approaches the border of normalizability.

2. Models and simulation methods

2.1. Models

All polymer models referenced and employed in this work use a freely jointed model to
represent a polymer loop. The polymer is represented by a set of N vertices in 3D, with
position vectors �xi , where the step between successive vertices is described, �r = �xi+1 − �xi .
In all models, we assume that the distribution of segment vectors �r , which we call P(�r), is
spherically symmetric and depends only on the steplength r = |�r|, such that

〈�r〉 =
∫

�r P (r) d3r = 0. (2)

We also assume that the mean-squared steplength is always the same (when defined!—see
below), we denote it by �:

〈r2〉 =
∫

r2P(r) d3r = 4π

∫ ∞

0
r4P(r) dr = �2. (3)

With this in mind, the simplest measure of the distribution breadth involves higher order
moments:

σ 2 = 〈r4〉 − 〈r2〉2

〈r2〉2
, (4)

where 〈r4〉 = 4π
∫ ∞

0 r6P(r) dr .
Specifically, we analysed the following models.
The fixed steplength model is described by the distribution

P(�r) = δ(|�r| − �)

4π�2
. (5)

For this model, of course σ = 0. With N segments, the loop’s contour length is obviously
L = N� and the mean-squared gyration radius of the loop is

〈
R2

g

〉 = (N + 1)�2/12.
The Gaussian steplength model is generated by the distribution

P(�r) =
(

3

2π�2

)3/2

exp

[
−3r2

2�2

]
, (6)

in this case, σ = √
2/3. The contour length of the N-segment loop in this model is

L = N〈|�r|〉 = N�
√

8/3π and the mean-squared gyration radius is
〈
R2

g

〉 = (N − 1/N)�2/12.
The random-flight steplength model is obtained from the generalized Cauchy–Lorenz

distribution (also known in the theory of Lévy flights [50]) of the form

P(�r) = α sin[3π/α]/(4�3π2)

1 + (r/�)α
, (7)

where the factor in the numerator ensures normalization. Here, α, a parameter of
the distribution, must be greater than 3, otherwise the normalization integral diverges.
Nevertheless, it would be fair to speak about a family of random-flight models, parameterized
by α > 3, instead of just one model. Varying α allows us to work with a ‘tuneable’
distribution. These distributions’ ‘fat’ power-law tails lead to diverging moments (which is
why they are used to describe super-diffusive behaviour seen in biological foraging [43–48],
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and quite recently, in the diffusion of bank notes across the United States, [49]). Specifically,
the ensemble-averaged contour length of the loop is well defined only at α > 4 (L =
N� sin(3π/α)/sin(4πα)), mean-squared gyration radius exists at α > 5 and σ only exists at
α > 7, in which case it is equal to

σ =
√

sin[5π/α]2

sin[3π/α] sin[7π/α]
− 1 (at α > 7). (8)

Finally, we also include loops with bimodally distributed steplength. For these loops,

P(�r) = P1
δ(|�r| − �1)

4π�2
1

+ P2
δ(|�r| − �2)

4π�2
2

, (9)

which means that two possible steplengths, �1 or �2, occur with probabilities P1 and P2, subject
to the normalization conditions, P1 + P2 = 1, and 〈r2〉 = P1�

2
1 + P2�

2
2 = �2. All bimodally

distributed models can be conveniently parameterized by P1 and λ = �2/�1. For these models,

σ =
√

P1 + (1 − P1)λ4

(P1 + (1 − P1)λ2)2
− 1 (10)

might be very large if λ is very large and P1 is rather close to unity (λ2 � 1/(1 − P1) � 1).

2.2. Loop generation

Unbiased generation of closed loops is of decisive importance for our work. Recently, we gave
a detailed review of the existing computational methods to generate statistically representative
closed loops (see the last section of the work [25]). In principle, the best way to generate
loops is based on the so-called conditional probability method. The idea is that a closed path
is generated as a random walk, step by step, except after the completion of k steps, the next
step, k + 1, is generated from the analytically computed conditional probability distribution of
the step vector �r , subject to the condition that after N − k more steps, the walker returns to the
starting point. This idea was first suggested and implemented for Gaussian-distributed steps
[42]. Recently, we implemented this method for steps of equal length [25]. Unfortunately,
this method is computationally costly and appears to be prohibitively difficult to implement
for more sophisticated models, such as random flight.

We therefore use the simpler method, called the method of triangles. This method [23–25]
generates loops of N segments with N divisible by 3. It involves creating a set of N/3 equilateral
triangles, each randomly oriented in 3D space. Each triangle is considered a triplet of vectors
with zero sum. A random permutation of the N edge vectors which make up these N/3
triangles, and then connecting all N vectors head-to-tail, creates a loop which will be closed,
as the N bond vectors together have 0 vector sum. Of course, this method imposes correlations
between segments. We therefore take special care to compare the results of this method with
the unbiased generation using the conditional probability method for both Gaussian distributed
and equal length step models. We found that no appreciable deviations in knot abundance
data arise from the imperfection of the triangle method. We therefore use the method of
triangles to generate the random flight and bimodal-distributed loops, for which no alternative
method is available. To avoid even the slightest problems with correlations, implicit in our
triplet method, and to ensure that the decay of trivial knot probability is in the exponential
regime, we exclude the data from small loops and fit the trivial knot probability on the interval
N ∈ [50, 300].

In the specific case of Lévy flights, or possibly in the case of bimodal steps when P1

is near the bounds of definition, 1 − P1 
 1 or P1 
 1, we admit the possibility that an
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Figure 1. The fraction of loops of N segments with trivial topology (01 or unknots) follows the
decaying exponential form given in equation (1), as seen in this semi-logarithmic plot. The value of
the decay constant N0 varies considerably as the loop structure is changed. This figure displays the
fraction trivially knotted for loops of fixed or Gaussian-distributed steplengths. The incongruity
of N0 between these two models, which for a variety of metrics are indistinguishable at large loop
lengths, is apparent. The figure also shows data for a modified random-flight model, equation (7).
In this model, the value of N0 is tuneable by way of the parameter α, which allows a substantial
range of N0 values, as indicated in the plot. The other model studied has bimodal distribution
of steplengths, as described in section (3.3), and although not shown in the figure, allows similar
variability in the decay length N0.

exceptionally long segment will not occur singly in the loop but rather three times because
of the nature of the triplet generation method. While this is an unfortunate artefact of triplet
generation with unknown ramification, we know of no conditional probability formulation
for the loop of Lévy-distributed steps. It would be interesting to address the Monte Carlo
dynamics generation of loops with the Levy segment distribution. We stress however that the
steplengths used for each triplet are selected from the proper Lévy distribution and, in terms
of relative probabilities, no steplength in any loop is unduly weighted. As with intersegment
correlation, we expect this problem to be damped out with increasing loop length.

2.3. Identification of topology and statistics

For each of the models listed above, we generated loops of up to at least N = 300 segments.
Once the loop was generated, its knotted state was assessed computationally with the

Alexander determinant, |�(−1)|, as well as the Vassilev invariants of degrees 2 and 3, v2 and
v3. For this purpose, we employed knot analysing routines described in detail elsewhere [33].

The fraction of generated loops with trivial topology was recorded for each loop type. In
the interval 50 � N � 300, every sample consisted of at least 106 loops. As a result, the
plot of trivial knot probability was created for each model, with statistical error bars smaller
than the data points in figure 1. Based on the data, N0 was measured for every model in our
repertoire.

3. Results

Our main results are shown in figure 1. There, we present the semi-log plots of the data on
the trivial knot probability as a function of the number of segments N for a variety of models.
To begin with, all our data agree quite well with the exponential character of the wtriv(N)
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Figure 2. Semi-log plots of trivial knot probability against the number of segments for the
Gaussian-distributed steplength model (�) and for the fixed steplength model, the latter generated
either via conditional probability method (◦) or triangles method (�). The results indicate no
dependence on the generation method, thus lending credence to the simpler method of triangles.
The results also indicate an almost perfect fit to the exponential law, equation (1), with N0 ≈ 240
for fixed steplength and N0 ≈ 305 for Gaussian-distributed steps.

dependence, formula (1). Our main emphasis is therefore the study of the characteristic value
of N0 for various models.

3.1. Loops of fixed steplength versus Gaussian-distributed steplength

Let us start with the two most commonly used models. In the case of fixed length steps, we
obtain N0 ≈ 240 (see also [23]). By contrast, for Gaussian-distributed length steps we get
N0 ≈ 305 (see [25]).

All data for the Gaussian model were generated using the fundamentally unbiased
conditional probability method. For the model with fixed length steps, we compare in figure 2
the data obtained by the conditional probability method [25] and data generated by the much
more efficient method of triangles (see section 2.2). As the figure indicates, there is practically
no visible difference in the results. Accordingly, we unreservedly rely on the triangles method
in the rest of this work.

Although our main attention in this paper is on the trivial knots (unknots), we show in
figure 3 some data for more complex knot probabilities. Our data at least do not contradict
the assertion that the probability of every particular knot decays exponentially at sufficiently
large N, with the same decay length as the trivial knot probability. At the same time, our
data also confirm the systematic difference between models—decay length, although the same
for all types of knots, does depend on the distribution of steplengths involved. Specifically,
probabilities of knots 31 and 41 decay at a noticeably slower rate for the Gaussian model than
for the model with fixed steps.

3.2. Random-flight loops

The results of our study of loops with random-flight steplength, α ∈ [3.5, 30], are summarized
in figures 1 and 4. The raw curves of probability given in figure 1 clearly show that the odds
of finding an unknot in a set of loops get increasingly unfavourable as α decreases. That is
not unexpected: at smaller α, the probability distribution (7) acquires an increasingly fat tail,
which implies the presence of a fraction of exceptionally long segments, and they of course
suppress the chance of knots.
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Figure 3. The probabilities of simple non-trivial knots 31 and 41 are plotted against the number
of segments in the loop in semi-log scale. The data at large N are consistent with the exponential
form of these probabilities (plotted as solid lines in the figure), which are characterized by the
same parameter N0 found for trivial knots. As with the case of trivial knots, we see the difference
between the fixed steplength model and Gaussian-distributed model, namely, that any particular
knot probability decays slower for Gaussian-distributed segments than for fixed segments.

Figure 4. Values of the trivial knot decay length, N0, measured from loops constructed of steps
with generalized Cauchy–Lorenz distribution (reminiscent of Lévy flights). The decay constant is
expressed as dependent on the variable α which defines how fat the tail of the distribution remains
at large steplengths. The knot probability decay constant, N0, approaches a constant value of about
266 at large α. The inset shows the same data in double logarithmic scale. It is seen that N0 blows
up approximately as (α − 3)−2 when α decreases. It is interesting to note that the dependence of
N0 on α does not show any signs of irregularity as α crosses values at which various moments of
segments length distribution start diverging (for instance, mean-squared gyration radius diverges
at α � 5 and mean contour length diverges at α � 4).

At very large α, the knot probability for the random-flight model appears similar to the
data for fixed steplength loops. Indeed, as figure 4 indicates, N0 for the random-flight model at
very large α approaches N0 ≈ 266 which is not dramatically different from N0 ≈ 240 for the
fixed length steps. In fact, the remaining difference might be associated with the fact that even
at very large α, the random-flight model, although it has essentially no very long steps, has
some relatively short ones, which might account for the discrepancy in N0. Figures 1 and 4
show further that at α ≈ 7.5, the random-flight loops behave essentially the same way as
Gaussian steps in terms of N0.

Most interestingly, figure 4 shows no sign of anything unusual happening to N0 at
the values of α at which various physically important moments of the segment length
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Figure 5. The surface plot of N0 measured for loops of bimodally distributed steplength. The two
steplengths used, �1 and �2, related by λ = �2/�1, occur with probabilities P1 and P2. The surface
is described by two degrees of freedom, λ and P1. The model reduces to the fixed steplength
model of section 3.1 under the conditions P1 = 0 or P1 = 1 or λ = 1, as is seen by the reduction
of N0 → 241 in these limits. Interestingly, the bimodal distribution of steplengths never reduces
N0 below the limit of N0 = 241 of the fixed steplength model. The maximum value of N0 which
we were able to observe, N0 = 974, occurs at P1 = 0.15, λ = 0.01.

distribution (7) start diverging. For instance, at α � 5 the mean-squared gyration radius
diverges, at α � 4 even the contour length of the loop diverges—and yet none of these facts
find any visible reflection on the dependence of N0 on α. N0 keeps smoothly increasing with
α, with a maximum measured value of N0 ≈ 4800 at α = 3.5. It appears that N0 in fact blows
up and goes to infinity as α approaches 3—the border below which the distribution (7) is not
normalizable. Moreover, as the inset of figure 4 shows, this divergence is well approximated
by the power-law dependence of the form

N0 = N∗
0 + B(α − α∗)−β, where N∗

0 ≈ 266, B ≈ 1080 ± 150, α∗ = 3

and β ≈ 2.1 ± 0.1. (11)

In fitting the data with this power law, we ignored the small irregularities visible around
α ≈ 13 (or ln[α − α0] ≈ 2.2), which we attribute to the numerical problems with the cut-off
implemented in our use of equation (A.1).

The meaning and physical origin of the apparent criticality observed at α approaching its
minimal possible value of 3 currently evades our understanding.

3.3. Loops of bimodal-distributed steplength

For this model, we examined the interval N ∈ [50, 600], with at least 106 loops in each
simulation record for N � 300 and at least 105 loops in those records used with length
N > 300. We also consider parameters P1 and λ = �1/�2 in the intervals P1 ∈ [0, 1] and
λ ∈ [0.01, 1.0], respectively. By symmetry, it is sufficient to look at λ < 1; this means, P1 is
the fraction of shorter segments.

The raw data from the loops with bimodal steplength are presented in figure 5. This
surface plot charts the change in N0 as a function of two parameters of the model, P1 and
λ. Below the surface is the corresponding contour plot of N0 as a function of these two
parameters. The changes in N0 are smooth, and there do not seem to be any singularities in the
behaviour of N0. The maximum observed value of N0 = 974 occurs at P1 = 0.15, λ = 0.01.
This maximum of N0 appears to be rather sharp, small deviations in P1 from 0.15 lead to
smaller N0 values. From the data, we believe that in this model N0 is maximized when the
fraction of shorter segments is P1 = 0.15 ± 0.05. As regards the second degree of freedom,
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Figure 6. The value of N0 for several different loop models is displayed against the steplength
distribution width σ , which is defined in equation (4). The data in this figure fail the hypothesis
that a larger σ universally maps to a larger N0. The measurement for fixed steplengths, shown in
the lower left corner, is the point from which all bimodal loop data emanates. As labelled in the
figure, the manifold for bimodal steplength is indexed by lines of constant P1 and λ.

λ, while our data certainly shows that as λ → 1 the bimodal system approaches the fixed
steplength system of section 3.1 (i.e., N0 = 241), in the opposite direction of λ → 0, it is not
clear if N0 will continue to increase in an unbounded way or be in some way encumbered. In
this regard, our present knot analysis machinery is limited by the relative disparity between
segments of different lengths, and more work needs to be done to elucidate the scaling of N0

in the limit λ → 0.
Qualitatively, all of our data are consistent with the idea that what suppresses knots is the

presence of a fraction of unusually long segments. One could then hypothesize that N0 might
depend on some unique property of the segment length distribution, for instance, σ , as defined
in equation (4). This hypothesis is tested in figure 6; the figure indicates that the hypothesis
fails. Nevertheless, the results presented in this figure are interesting, as they show that large
N0 can be achieved by the combination of segment length difference (λ) and segment-type
fractions.

Although a functional relationship between N0 and α seems evident in our data for
random-flight loops, the data we have for loops with bimodal distribution of steplength do not
suggest a simple single parameter which determines N0.

4. Conclusions

In a qualitative sense, it does seem that there exists a relationship between N0 and the reach of
successive segments within the chain (as seen in figure 6). It seems qualitatively clear indeed
that knottedness is greatly suppressed by the presence of some very long segments. Thus,
the slowly decaying tail of the segment length probability distribution, or the presence of a
small fraction of very long segments, implies a large N0, which sounds natural. However, our
understanding of these observations beyond the qualitative level is limited. We found that N0

appears to exhibit no singularity associated with divergence of any natural characteristics of the
loop, such as its gyration radius or even contour length; instead, N0 exhibits power-law critical
behaviour when the segment length distribution approaches the boundary of normalizability.
In addition, we do not know which property of the segment length distribution determines N0.
We have established that this is not simply the distribution width, and from the results with
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random-flight distribution it seems also clear that it is not based on any finite moments of the
distribution. We consider the development of a fuller understanding of the variance of N0 a
compelling challenge.

The data clearly show that wide variation in the behaviour of N0 is possible, including
very large values of N0 in certain models. Given that N0 plays the role of the crossover length
for the critical behaviour of topologically constrained loops [25], we can speculate that the
models with very large N0 are in some way similar to the models of self-avoidance in the
vicinity of the θ -point. We think that this analogy deserves very close attention.
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Appendix. On the numerical implementation of generalized Cauchy–Lorenz
distribution

To generate steplengths from the random-flight distribution (7), we first take a random number
q from the uniform distribution on the interval [0, 1] and then find steplength r as r = f (q),
where the mapping f (q) is determined by the equation

q =
∫ f (q)

0
P(�r) 4πr2 dr, (A.1)

where P(�r) is given by equation (7). Although a closed-form representation of the right-hand
side of equation (A.1) exists in the form of an incomplete beta function [51], we chose to
implement the mapping via a numerical interpolation of tabulated values of the integral. As the
power-law tail of this distribution is quite fat, particularly at small α, accurate representation
of the integral becomes challenging at large steplengths. This work is ultimately numerical,
and we are forced to truncate the representation of the integral to 1.0 at some maximum
steplength, i.e. specifying an upper bound on f (q). The slow convergence of the tail is behind
the appearance of the few outliers in the data for the random-flight method, see figure 4.
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